(Pages: 4)

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MAY 2018

Second Semester

Complementary Course-Mathematics

INTEGRAL CALCULUS AND MATRICES

(Common for B.Sc. Physics, Chemistry, Petrochemicals, Geology, Food Science and Quality Control and Computer Maintenance and Electronics)

[2013—2016 Admissions]

Time: Three Hours

Maximum Marks: 80

Part A

Answer all questions. Each question carries 1 mark.

- 1. State fundamental theorem of calculus.
- 2. Find $\int_{-2}^{-1} x \, dx$.
- 3. Write the formula for finding the length of a plane curve y = f(x) on the interval [a, b].
- 4. Write the formula for finding the surface area of the surface of revolution that is generated by revolving the portion of the curve y = f(x), between x = a, x = b about x-axis.
- 5. Write the formula for the volume of a solid of revolution about y-axis.
- 6. Find $\int_0^3 \int_1^2 (1 + 8xy) \, dy \, dx$.
- 7. Write the formula for finding the area of a region in xy plane in terms of double integrals.
- 8. State Cayley-Hamilton theorem.
- 9. Define a non-singular matrix.
- 10. Define rank of a matrix.

 $(10 \times 1 = 10)$

Turn over

Part B

Answer any eight questions. Each question carries 2 marks.

11. Evaluate
$$\int_0^{x^2} \cos \sqrt{t} \ dt$$
.

12. Evaluate
$$\int \frac{\log x}{x} dx$$
.

13. Find the area bounded by
$$xy = c^2$$
, the x-axis and $x = 2$, $x = 3$.

14. Find the length of the arc of the curve
$$y = \log \sec x$$
 from $x = 0$ to $x = \pi/3$.

15. Determine the volume of the solid of revolution when arc of the curve
$$y = xe^x$$
 between $x = 0$ and $x = 1$ is revolved about the line $y = 0$.

16. Evaluate
$$\int_{0}^{4} \int_{0}^{x^2} e^{y/x} dy dx.$$

17. Evaluate
$$\iint r \, dr \, d\theta$$
 over the area of the cardiode $r = a \left(1 - \cos \theta\right)$ above the initial line.

18. Evaluate
$$\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$$
 by changing the order of integration.

19. Evaluate
$$\int_{0}^{3} \int_{0}^{2} \int_{0}^{1} (x + y + z) dz dx dy$$
.

21. Find the eigen values of the matrix
$$\begin{bmatrix} 3 & 4 \\ 5 & 2 \end{bmatrix}$$
.

22. Find the rank of the matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \end{bmatrix}$$
.

$$(8 \times 2 = 16)$$

Part C

Answer any six questions. Each question carries 4 marks.

23. Evaluate
$$\int_{0}^{1} x \log (1+x) dx.$$

24. Evaluate
$$\int_{0}^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx.$$

- 25. Find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 26. Find the area enclosed by the parabolas $y^2 = x$ and $x^2 = y$.
- 27. Find the entire length of the astroid $x^{2/3} + y^{2/3} = a^{2/3}$.
- 28. Find the volume of the solid that results when the region enclosed by $y = x^2$, x = 0, x = 2, y = 0 is revolved about the x = axis.
- 29. Evaluate $\iint xy \, dx \, dy$ over the positive quadrant $x^2 + y^2 = a^2$.
- 30. Obtain the row equivalent canonical matrix of $\begin{bmatrix} 1 & 1 & 1 & 2 \\ 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \end{bmatrix}$.
- 31. Show that if λ is a characteristic root of a non-singular matrix A, then λ^{-1} is a characteristic root of A^{-1} .

 $(6 \times 4 = 24)$

Part D

Answer any two questions. Each question carries 15 marks.

- 32. (a) Find the area of the segment cut-off from $y^2 = 4x$ by the line y = x.
 - (b) Find the length of the curve $x = a(\theta + \sin \theta)$, $y = a(1 \cos \theta)$.

Turn over

- 33. (a) Derive the formula for the volume of a sphere of radius r.
 - (b) Find the area of the surface that is generated by revolving the portion of the curve $y = x^2$ between x = 1 and x = 2 about the y-axis.
- 34. (a) Find the volume bounded by the xy plane, the cylinder $x^2 + y^2 = 1$ and the plane x + y + z = 3.
 - (b) Evaluate $\iiint (x^2 + y^2 + z^2) dx dy dz$ bounded by the co-ordinate planes x = a, y = a, z = a.
- 35. (a) Solve the system of equations:

$$5x + 3y + 3z = 48$$

$$2x + 6y - 3z = 18$$

$$8x - 3y + 2z = 21$$

(b) Find the eigen values and corresponding eigen vectors of the matrix:

$$\begin{bmatrix} 5 & 1 & -1 \\ 1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}.$$

 $(2\times15=30)$