(Pages: 2)

Reg. No	•••••
Name	

M.Sc. DEGREE (CSS) EXAMINATION, JUNE 2015

Fourth Semester

Factulty of Science

Branch II—Physics-A—Pure Physics—Open Elective Bunch

PH4 OE1—OPTO ELECTRONICS

(2012 Admission onwards—Regular/Supplementary)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any six questions. Each question carries a weight of 1.

- 1. Explain optical code division multiplexing.
- 2. Write a note on electro optic modulator.
- 3. Explain bending losses in optic fibre.
- 4. Enumerate the causes of attenuation in an optical fibre. How can they be reduced?
- 5. Explain direct and indirect band gap semiconductors with energy band diagrams and with examples.
- 6. Define optical absorption coefficient.
- 7. Describe the structure and functioning of a photodiode.
- 8. Explain population inversion in laser.
- 9. Explain the term phase matching in non-linear optics.
- Write a short note on two photon absorption.

 $(6 \times 1 = 6)$

Part B

Answer any **four** questions. Each question carries a weight of 2.

- 11. A double heterojunction InGaAsP LED emitting at a peak wavelength of 1310 nm has radiative and non-radiative recombination times of 25 and 90 ns respectively. The drive current is 35 mA. If the refractive index of the light source material is n = 35, find the power emitted from the source.
- 12. For light of wavelength 0.8 μ m, the absorption coefficient of silicon is 10^5 m.⁻¹ Refractive index of Si is 3.5. Calculate quantum efficiency and responsivity. The width of depletion layer is 20 μ m.
- 13. The optical power launched at the input of a multimode fibre is 10 mW. If the power received 10 km away at the output is 1 mW. Calculate the attenuation at the fibre in dB/km.

Turn over

- 14. Compute the following if a PIN Photo-diode has a depletion width of 30 μ m, a carrier velocity of 5×10^4 m/s and a junction capacitance of 6 pF.
 - (i) Transit time limited bandwidth.
 - (ii) Calculate the bandwidth if the load resistance is 10 k Ω .
- 15. The quantum efficiency of a particular avalanche photo-diode is 80 % for detection of radiation at a wavelength of 0.9 μ m. When the incident optical power is 0.5 μ W the output current, after avalanche multiplication, is 11 μ A. Calculate the multiplication factor of the avalanche photodiode.
- 16. A 2 km. length of optical fibre has input power of 20 mW and an output power 150 μ W. Find the loss in dB/km. Express the loss in dBm.

 $(4 \times 2 = 8)$

Part C

Answer all questions.

Each question carries a weight of 4.

- 17. (a) Explain the working of an optical fibre on a wave guide.
 - (b) What is the difference between the performance of a step-index fiber and a graded index fiber?

Or

- (a) Explain the working of a semiconductor laser.
- (b) Derive an expression for the power output of a semiconductor Laser.
- 18. Explain what is the signal loss or attenuation mechanisms in an optical fiber.

Or

- (a) Define the quantum efficiency and the responsitivity of a photodetector.
- (b) Derive an expression for the responsivity of an intrinsic photodetector.
- 19. Explain the difference between photo-transistor and ordinary transistor. Describe the working of a phototransistor and derive an expression for its optical gain.

Or

Discuss the different dispersion mechanisms in a single mode optical fibre.

20. Explain pockets and Kerr effect with necessary details.

Or

- (a) Discuss second and third order nonlinear processes.
- (b) Explain the term optical mixing in nonlinear optics.

 $(4 \times 4 = 16)$