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Part A

Answer any ten questions.

Each question carries 2 marks.
 

1.  Find the velocity and acceleration of the particle whose position is given by 
 at .

2.  Define unit tangent vector of a curve.

3.  Write the formula for finding directional derivative in terms of gradient

4.  Define the line integral of a continuous vector function  over a smooth 
  oriented curve   in space.

5.  Find a parametrization of the sphere  .

6.  State Gauss Divergence Theorem.

7.  Find the equation of the hyperbola with foci  vertices   in standard form.

8.  Find the cartesian equation of the line  .

r(t) = (t − sint)i + (1 − cost)j t = π
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9.  Find the eccentricity of the hyperbola  .

10.  Give an example of a group which is commutative.

11.  Define a cyclic Group.

12.  Define permutation on a non empty set.

(10×2=20)

Part B

Answer any six questions.

Each question carries 5 marks.
 

13.  Find the derivative of  at  in the direction of the vector 

.

14.  Find the gradient of  at and find the derivative
of the function  at this point in the direction of .

15.  Find the work done by the force field   along the

helix   from   to . 

16.  Apply Green's Theorem to evaluate   where   is the square

with vertices    oriented counterclockwise.

17.  Find the surface area cut from the bottom of the paraboloid   by the plane  
.

18.  Describe the graph of  .

19.  Find the vertices, focii, length of the semimajor axis and the length of the semiminor axis
of the ellipse 

  .

20.  Define the group  under addition modulo 8, and draw the subgroup diagram for it.

21.  If p and q are distinct prime numbers, find the number of generators of .

(6×5=30)

Part C

Answer any two questions.

Each question carries 15 marks.
 

8 − 2 = 16x2 y2

f(x, y) =
x−y

xy+2 (1, −1)

u = 12i + 5j

f(x, y, z) = ln(2x + 3y + 6z) (1, 1, 0)

f n = 2i + 3j + 6j

F = ( + y) i + ( + x) j + z kx2 y2 ez

r(t) = (cos t) i + (sin t) j + k, 0 ≤ t ≤ 2π
t

2π
(1, 0, 0) (1, 0, 1)

x cos y dx − y sin x dy∮
C
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22.  (a) Find the unit tangent, principal normal and curvature of the curve 
. 

(b) Find the directions in which   increases most
rapidly and decreases most rapidly at the point .

23.  Verify Green's Theorem in the plane for   defined in
the region bounded by the lines  .

24.  (a) Find the equation of the parabola   when shifted right 1 unit and down 2 units.
Also find  
the vertex, focus and directrix of the new parabola. Sketch the new parabola with all these
details. 
(b) Find the polar equation of the circle  .

25.  (a) Show that a group with no proper nontrivial subgroup is cyclic. 
(b) Let  and  be two subgroup of a group . Show that  is a subgroup of .

(2×15=30)

r(t) = (cost + tsint) i + (sint − tcost)j,   t > 0

h(x, y, z) = cos(xy) + + ln(zx)eyz

(1, 0, )1
2

F = (3 − 8 ) i + (4y − 6xy) jx2 y2

x = 0, y = 0, x + y = 1

= 8xy2

(x − 6 + = 36)2 y2
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