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ok Section A

Answer any five questions.
Each question has 1 weight.

1. Define counting set function and show that it is countably additive and translation invariant.
2. ‘Show that linear combination of measurable functions is also measurable.

_'" : 3. Prove that Dirichlet’s function is not Riemann integrable.
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ion on a measure space show that I fAp=0iff f =0aqe.
—-> f in measure thn | | = f l in measure.
educt of complete measures need not be a complete measure.
; (6 x1=5)
Sectlon B (Short Essay Type Questmns)
i Answer any five questions.
Each questmn has 2 weight.
‘fbﬂrel set and the translate of a measurable set is measurable.

Hﬁ_ﬁ“terlal exam;:»h- PI' OVQ your assertion.
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13. Differentiate between counting measure and Dirac measure

. Also differentiate between measure
and signed measure.

14. Obtain necessary and sufficient condition for the extended real valued function to be measurable.

16. If £, — f au. prove

(a) f,, & f in measure
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mtegratmg e ~Y sin 2xy with respect to x-and y show that :
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| I e (sin® y)/y gy = -;]1'— log 5.
(b x %= 10)
i Section C (Long Essay Type)

Answer any three questions.

Each questwn has 5 weight.
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I?;f:' bmmded functlon defined on a measurable set E with mE < . Obtain necessary
shcif " mnditmn for f be measurable

'-l asurable space and f and g measurable real-valued function on X. Prove
/ « (ii) products (ii ) ;,ammum and minimum prOpertles Also prove that measurability of



