\qquad
Name \qquad

M.Sc. DEGREE (C.S.S.) EXAMINATION, MAY 2020

Fourth Semester

Faculty of Science
Branch I (A) : Mathematics
MT 04 E14—CODING THEORY
(2012 Admission onwards)

Time : Three Hours

Maximum Weight : 30

Part A

Answer any five questions.
Each question has weight 1.

1. Show that the set of all binary words of length n is a vector space.
2. Compute the weight of each of the following words and the distance between each pair of them.
$\mathrm{V}_{1}=1001010, \mathrm{~V}_{2}=0110101, \mathrm{~V}_{3}=0011110$.
3. Show that if C is a binary $[n,(n-1) / 2]$ self orthogonal code, for odd n, then C^{+}is the $[n,(n+1) / 2]$ code generated by C and h.
4. Show that a self dual $\left[n, \frac{n}{2}\right]$ ternary code exists iff n is divisible by 4 .
5. Show that the order of any element $g \in G$, divides the order of G, where G is a finite group.
6. Find the minimal polynomials for the elements 0 and 1 in GF (16) constructed using $1+x+x^{3}$.
7. Show that if a binary cyclic code with generator polynomial $g(x)$ is self-orthogonal then $1+x$ must divide $g(x)$.
8. Prove that a Reed-Solomon code C of designed distance d has d as its actual minimum weight. Also show that C is an MDS code.

Part B

Answer any five questions.
 Each question has weight 2.

9. Prove that if the rows of a generator matrix G for a binary $[n, k]$ code C have weights divisible by 4 and are orthogonal to each other, then C is self-orthogonal and all weights in C are divisible by 4 .
10. Define syndrome. Show that if C is a binary code and e is any vector, the syndrome of e is the sum of those columns of H where e has non-zero components ; where H be a parity check matrix of an [n, k] code.
11. Define Golay code. Find the minimum weight and show that it is triple error correcting code.
12. Show that every monic polynomial over a field F can be expressed uniquely as a product of irreducible monic polynomials over F.
13. Let $x^{n}-1=g(x) h(x)$ over GF (q). Prove that a cyclic code C with generator polynomial $g(x)$ is self-orthogonal iff the reciprocal polynomial of $h(x)$ divides $g(x)$.
14. Find a self-orthogonal length 15 binary cyclic code.
15. Show that in a field of characteristics $\mathrm{P}(x \pm y)^{\mathrm{P}^{m}}=x^{\mathrm{P}^{m}} \pm y^{\mathrm{P}^{m}}$.
16. Show that for any prime p and positive integer m, there is a unique field of p^{m} elements.

Part C

Answer any three questions.
Each question has weight 5.
17. (a) If u is a vector in c of weight s, show that there is a dependence relation among s columns of any parity check matrix of c and conversely that any dependence relation among s columns of a parity check matrix of c yields a vector of weight s in c.
(b) If C has minimum weight d, show that c can detect all errors of weight $\leq d-1$.
(c) If C has minimum weight $2(t+1)$, show that we can simultaneously correct all errors of weight t or less and detect all errors of weight $t+1$.
18. Prove the following :
(a) (i) Given m and d, then there exists a binary code of length n, minimum distance d or more and dimension $k \geq n-m$, whenever

$$
\binom{n-1}{1}+\binom{n-1}{2}+\ldots . .+\binom{n-1}{d-2}<2^{m}-1
$$

(ii) Given m and d, then there exists a code over GF (q) of length n, minimum distance d or more and dimension $k \geq n-m$, whenever
$(q-1)\binom{n-1}{1}+(q-1)^{2}\binom{n-1}{2}+\ldots . .+(q-1)^{d-2}\binom{n-1}{d-2}<q^{m}-1$.
(b) If d is even show that $\mathrm{A}(n-1, d-1)=\mathrm{A}(n, d)$.
19. (a) Messages are encoded using C_{15}. Determine if possible the location of the errors if w is received with syndrome $w \mathrm{H}$ is given by 01000000 . The parity check matrix H for C_{15} is given below :
$H=\left[\begin{array}{ll}1000 & 1000 \\ 0100 & 0001 \\ 0010 & 0011 \\ 0001 & 0101 \\ 1100 & 1111 \\ 0110 & 1000 \\ 0011 & 0001 \\ 1101 & 0011 \\ 1010 & 0101 \\ 0101 & 1111 \\ 1110 & 1000 \\ 0111 & 0001 \\ 1111 & 0011 \\ 1011 & 0101 \\ 1001 & 1111\end{array}\right]$
(b) Prove that a doubly even $\left[n, \frac{n}{2}\right]$ code exists iff n is divisible by 8 .
20. (a) Show that $\mathrm{F}(x) /(f(x))$ is a field iff $f(x)$ is irreducible. Also show that if $f(x)$ be an irreducible polynomial of degree m over $\operatorname{GF}(p)$, then $\mathrm{F}^{\prime}=\mathrm{GF}(p)[x] /(f(x))$ is a field with p^{m} elements.
(b) Prove that every finite field has a primitive element.
21. (a) If $g(x) h(x)=x^{n}-1$ in $\mathrm{F}[x]$ and $g(x)$ is the generator polynomial of a cyclic code C , show that the reciprocal polynomial of $h(x)$ is the generator polynomial of C^{\perp}. Also show that if $h(x)=h_{0}+h_{1}(x)+\ldots+h_{k}\left(x^{k}\right)$, then the matrix H given below is a parity check matric of C, and C^{\perp} is cyclic.

$$
\mathrm{H}=\left(\begin{array}{cccc}
h_{k} & h_{k-1} \ldots . & h_{0} & 00 \ldots \ldots .0 \\
0 & h_{k} \ldots . . & h_{1} & h_{0} 0 \ldots \ldots 0 \\
" & " & " & \\
" & " & " & \\
0 & 0 \ldots . & h_{k} \ldots \ldots & h_{0}
\end{array}\right)
$$

(b) Prove that every cyclic [n, k] code C has an idempotent generator e (x).
22. (a) Prove that the minimum weight of a BCH code C of designed distance σ is atleast σ.
(b) Let $f(x)$ be a polynomial with co-efficients in GF (q) and let S be the set of its roots in some field $F=G F\left(q^{m}\right)$. Prove that the weight of is greater then or equal to the size of any set A in a set I_{s} of subsets of F that is independent with respect to S.
$(3 \times 5=15)$

