20000152





Reg. No.....

Name.....

# M.Sc. DEGREE (C.S.S.) EXAMINATION, MAY 2020

Fourth Semester

Faculty of Science Branch I (A) : Mathematics MT 04 E14—CODING THEORY (2012 Admission onwards)

Time : Three Hours

Maximum Weight : 30

#### Part A

Answer any **five** questions. Each question has weight 1.

- 1. Show that the set of all binary words of length n is a vector space.
- 2. Compute the weight of each of the following words and the distance between each pair of them.  $V_1 = 1001010$ ,  $V_2 = 0110101$ ,  $V_3 = 0011110$ .
- 3. Show that if C is a binary [n, (n 1)/2] self orthogonal code, for odd n, then C<sup>+</sup> is the [n, (n + 1)/2] code generated by C and h.

4. Show that a self dual  $\left[n, \frac{n}{2}\right]$  ternary code exists iff *n* is divisible by 4.

- 5. Show that the order of any element  $g \in G$ , divides the order of G, where G is a finite group.
- 6. Find the minimal polynomials for the elements 0 and 1 in GF (16) constructed using  $1 + x + x^3$ .
- 7. Show that if a binary cyclic code with generator polynomial g(x) is self-orthogonal then 1+x must divide g(x).
- 8. Prove that a Reed-Solomon code C of designed distance *d* has *d* as its actual minimum weight. Also show that C is an MDS code.

 $(5 \times 1 = 5)$ 

Turn over





Part B

# Answer any **five** questions. Each question has weight 2.

- 9. Prove that if the rows of a generator matrix G for a binary [n, k] code C have weights divisible by 4 and are orthogonal to each other, then C is self-orthogonal and all weights in C are divisible by 4.
- 10. Define syndrome. Show that if C is a binary code and e is any vector, the syndrome of e is the sum of those columns of H where e has non-zero components ; where H be a parity check matrix of an [n, k] code.
- 11. Define Golay code. Find the minimum weight and show that it is triple error correcting code.
- 12. Show that every monic polynomial over a field F can be expressed uniquely as a product of irreducible monic polynomials over F.
- 13. Let  $x^n 1 = g(x)h(x)$  over GF (q). Prove that a cyclic code C with generator polynomial g(x) is self-orthogonal iff the reciprocal polynomial of h(x) divides g(x).
- 14. Find a self-orthogonal length 15 binary cyclic code.
- 15. Show that in a field of characteristics  $P(x \pm y)^{P^m} = x^{P^m} \pm y^{P^m}$ .
- 16. Show that for any prime p and positive integer m, there is a unique field of  $p^m$  elements.

 $(5 \times 2 = 10)$ 

### Part C

# Answer any **three** questions. Each question has weight 5.

- 17. (a) If u is a vector in c of weight s, show that there is a dependence relation among s columns of any parity check matrix of c and conversely that any dependence relation among s columns of a parity check matrix of c yields a vector of weight s in c.
  - (b) If C has minimum weight *d*, show that *c* can detect all errors of weight  $\leq d-1$ .
  - (c) If C has minimum weight 2 (t + 1), show that we can simultaneously correct all errors of weight t or less and detect all errors of weight t + 1.





#### 18. Prove the following :

(a) (i) Given *m* and *d*, then there exists a binary code of length *n*, minimum distance *d* or more and dimension  $k \ge n-m$ , whenever

$$\binom{n-1}{1} + \binom{n-1}{2} + \dots + \binom{n-1}{d-2} < 2^m - 1.$$

(ii) Given *m* and *d*, then there exists a code over GF (q) of length *n*, minimum distance *d* or more and dimension  $k \ge n-m$ , whenever

$$\binom{n-1}{1} + \binom{n-1}{2} + \binom{n-1}{2} + \dots + \binom{q-1}{d-2} \binom{n-1}{d-2} < q^m - 1.$$

- (b) If *d* is even show that A(n-1, d-1) = A(n, d).
- 19. (a) Messages are encoded using  $C_{15}$ . Determine if possible the location of the errors if w is received with syndrome wH is given by 01000000. The parity check matrix H for  $C_{15}$  is given below :

|    | 1000 | 1000 |
|----|------|------|
| H= | 0100 | 0001 |
|    | 0010 | 0011 |
|    | 0001 | 0101 |
|    | 1100 | 1111 |
|    | 0110 | 1000 |
|    | 0011 | 0001 |
|    | 1101 | 0011 |
|    | 1010 | 0101 |
|    | 0101 | 1111 |
|    | 1110 | 1000 |
|    | 0111 | 0001 |
|    | 1111 | 0011 |
|    | 1011 | 0101 |
|    | 1001 | 1111 |
|    | _    |      |

(b) Prove that a doubly even  $\left[n, \frac{n}{2}\right]$  code exists iff *n* is divisible by 8.

Turn over





20. (a) Show that F(x)/(f(x)) is a field iff f(x) is irreducible. Also show that if f(x) be an irreducible polynomial of degree m over GF(p), then F' = GF(p)[x]/(f(x)) is a field with  $p^m$  elements.

4

- (b) Prove that every finite field has a primitive element.
- 21. (a) If  $g(x)h(x) = x^n 1$  in F[x] and g(x) is the generator polynomial of a cyclic code C, show that the reciprocal polynomial of h(x) is the generator polynomial of  $C^{\perp}$ . Also show that if  $h(x) = h_0 + h_1(x) + \dots + h_k(x^k)$ , then the matrix H given below is a parity check matric of C, and  $C^{\perp}$  is cyclic.

$$\mathbf{H} = \begin{pmatrix} h_k & h_{k-1}.... & h_0 & 00.....0\\ 0 & h_k.... & h_1 & h_00.....0\\ " & " & "\\ 0 & 0.... & h_k.... & h_0 \end{pmatrix}$$

- (b) Prove that every cyclic [n, k] code C has an idempotent generator e (x).
- 22. (a) Prove that the minimum weight of a BCH code C of designed distance  $\sigma$  is at least  $\sigma.$ 
  - (b) Let f(x) be a polynomial with co-efficients in GF (q) and let S be the set of its roots in some field  $F = GF(q^m)$ . Prove that the weight of is greater then or equal to the size of any set A in a set  $I_s$  of subsets of F that is independent with respect to S.

 $(3 \times 5 = 15)$ 

