F	34	9	7
---	----	---	---

100						
(P	0	-	_	~	-	0)
	a	2			84	21

Reg. No	***************************************
Name	

M.Sc. DEGREE (CSS) EXAMINATION, JANUARY 2015

Third Semester

Faculty of Science

Branch I (A)—Mathematics

MT 03 C14—NUMBER THEORY AND CRYPTOGRAPHY

(2012 admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions.

Each question carries weight 1.

- 1. Divide (40122)₇ by (126)₇.
- 2. Describe all the solutions of $3x \equiv 4 \mod 12$.
- 3. Let $m = 2^{24} + 1 = 16777217$. Find a Fermat prime which divides m.
- 4. For each degree $d \le 6$, find the number of irreducible polynomials over F_2 of degree d.
- 5. What is classical cryptosystem?
- 6. In F_9^* with α a root of $X^2 X 1$, find the discrete logarithm of -1 to the base α .
- 7. Find all Carmichael numbers of the form 3 pq (with p and q prime).
- 8. Use Fermat factorization to factor 4601.

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question carries weight 2.

- 9. Find an upper bound for the number of bit operations required to compute n!.
- 10. Prove that $n^5 n$ is always divisible by 30.
- 11. For any integer b and any positive integer n, prove that b^{n-1} is divisible by b-1 with quotient $b^{n-1} + b^{n-2} + \ldots + b^2 + b + 1$.
- 12. Show that the order of any at F_q^* divides q-1, where F_q^* denotes the set of non-zero elements in the finite field F_q .

- 13. Describe the ElGamel cryptosystem.
- 14. Find the discrete log of 153 to the base 2 in F_{181}^* .
- 15. Factor 4087 using $f(x) = x^2 + x + 1$ and $x_0 = 2$.
- 16. Use quadratic sieve method to factor 1046603 with P = 50 and A = 500.

 $(5 \times 2 = 10)$

Part C

Answer any three questions. Each question carries weight 5.

- 17. State and prove Chinese remainder theorem.
- 18. Show that the Euclidean algorithm always gives the greatest common divisor in a finite number of steps. Also prove that for a > b, Time (finding g.c.d. (a, b) by the Euclidean algorithm) = $O(\log^3(a))$.
- 19. State and prove the law of quadratic reciprocity.
- 20. Describe the algorithm for finding discrete logs in finite fields.
- 21. Explain Diffe-Hallman key exchange system.
- 22. Prove that if n is a strong pseudoprime to the base b, then it is an Euler pseudoprime to the base b.

 $(3 \times 5 = 15)$