~	0	-	0	0
G	0	Ð	1	ŏ

(Pages: 2)

Reg.	No
Name	Α

M.Sc. DEGREE (CSS) EXAMINATION, AUGUST 2015

Second Semester

Faculty of Science

Branch II - Physics - A - Pure Physics

PH 2C 05 - MATHEMATICAL METHODS IN PHYSICS - II

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any six questions.

Weight 1 each.

- 1. Evaluate: $\int_{1}^{1} (2+1)^{2} dz$.
- 2. What is meant by an analytic function of a complex variable? Give the necessary and sufficient conditions for a function to be analytic.
- 3. State Cauchy's Residue theorem.
- 4. State the conditions under which a function can be expressed in the form of a Fourier series.
- 5. State and prove convolution theorem of Fourier transform.
- 6. What is meant by point group? Give examples.
- 7. Define a cyclic group. Show that cyclic groups are abelian.
- 8. What are reducible and irreducible representation of a group?
- 9. Write down the Laplacian in spherical polar co-ordinates.
- 10. Write down Helmholtz differential equation. What are the different methods that can be used to solve this?

 $(6 \times 1 = 6)$

Part B

Answer any four questions.

Weight 2 each.

- 11. Show that the function z |z| is not analytic anywhere.
- 12. Evaluate $\int_c \frac{e^z}{z^2+1} dz$ over the circular path |z|=2.

Turn over

- 13. Find the finite sine transform of e^{ax} .
- 14. If every element of a group is its own inverse, then show that the group is an abelian group.
- 15. Construct the symmetry groups of an equilateral triangle.
- 16. Explain the solution of Poisson's equation $\nabla^2 = \phi = \frac{-\rho}{\epsilon o}$ using Green's function.

 $(4 \times 2 = 8 \text{ marks})$

Part C

Answer all questions.

Weight 4 each.

17. (a) If $W = \phi + i \Psi$ represents the complex potential for an electric field and

$$\Psi = x^2 - y^2 + \frac{x}{x^2 + y^2}$$

determine the function ϕ .

Or

(b) Find the Taylor series expansion of a function of the complex variable

$$f(z) = \frac{1}{(z-1)(z-3)}$$

about the point z = 4. Find its region of convergence.

18. (a) A sinusoidal voltage E Sin wt is passed through a half wave rectifier which clips the negative portion of the wave. Develop the resulting portion of the function u(t) = 0

when,
$$-\frac{T}{2} < t < 0$$
.

 $u\left(t\right) = \mathbf{E} \operatorname{Sin}$ wt when $0 < t < \frac{\mathbf{T}}{2}$ where T is the period.

Or

(b) Obtain the Laplace transform of full wave rectified sine wave given by:

$$f(t) = \operatorname{Sin} wt \ 0 < t < \frac{\pi}{w}$$

19. (a) Prove the orthogonality theorem in group theory.

Or

- (b) If a matrix commutes with all the matrices of an irreducible representation, show that the matrix is a constant.
- 20. (a) Using method of separation of variables, solve $x \frac{\partial 4}{\partial x} + y \frac{\partial 4}{\partial y} = 0$.

Or

(b) Define Green's function. Discuss the solution of Poisson's equation using Green's function.

 $(4 \times 4 = 16)$