

Name	•••••

Fourth Semester

Faculty of Science

Branch I (A)—Mathematics

MT04 C16—SPECTRAL THEORY

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any **five** questions. Each question has weight 1.

- 1. Suppose (x_n) is a sequence in a normed space X such that $x_n \xrightarrow{w} x$. Show that the weak limit x of (x_n) is unique.
- 2. Define Contraction on a metric space X. Prove that contraction on a metric space is continuous.
- 3. Consider the Hilbert sequence space l^2 . Define a linear operator $T: l^2 \to l^2$ by $T(\xi_1, \xi_2, \ldots) = (0, \xi_1, \xi_2, \ldots)$, where $(\xi_1, \xi_2, \ldots) \in l^2$. Prove that 0 is a spectral value of T but 0 is not an eigenvalue of T.
- 4. Show that for any operator $T \in B(X, X)$ on a complex Banach space $X, r_{\sigma}, (\alpha T) = \alpha r_{\sigma}(T)$.
- 5. Let X and Y be normed spaces. Let $T: X \to Y$ be a linear operator such that T maps every bounded sequence (x_n) in X onto a sequence (Tx_n) in Y has a convergent subsequence. Prove that T is compact.
- 6. Let X and Y be normed spaces. Let $T: X \to Y$ be a bounded linear operator with dim $T(X) < \infty$. Prove that T is compact.
- 7. Prove that the spectrum $\sigma(T)$ of a bounded self-adjoint linear operator $T: H \to H$ on a complex Hilbert space H is real.
- 8. Let P_1 and P_2 be two projections on a Hilbert space H. Let $P_1 + P_2$ be a projection. Prove that $Y_1 = P_1(H)$ and $Y_2 = P_2(H)$ are orthogonal.

 $(5 \times 1 = 5)$

Turn over

20000140

Part B

Answer any **five** questions. Each question has weight 2.

- 9. Let (x_n) be a sequence in a normed space X. Prove that:
 - (i) Strong convergence implies weak convergence with the same limit.
 - (ii) If dim $X < \infty$, then weak convergence implies strong convergence.
- 10. Consider the space l^2 . Let T_n be a sequence of operators from l^2 to l^2 defined by $T_n x =$

 $(\underbrace{0,\,0,\,\ldots,\,0}_{n \text{ zeros}},\,\xi_1,\,\xi_2,\,\xi_3,\,\ldots)$ where $x=(\xi_1,\,\xi_2,\,\ldots)\in l^2$. Show that (T_n) is weakly operator convergent to 0 but not strongly.

- 11. State and prove Banach fixed point theorem.
- 12. Prove that all matrices representing a given linear operator $T: X \to X$ on a finite dimensional normed space X relative to various bases for X have the same eigen values.
- 13. Let A be a complex Banach algebra with identity. Let G be the set of all invertible elements of A. Then prove that G is an open subset of A and hence the subset M = A G of all non-invertible elements of A is closed.
- 14. Let X be a complex Banach space. Let $S, T \in B(X, X)$ then show that
 - $(i) \quad R_{_{11}}-R_{\lambda}=\left(\mu-\lambda\right)\,R_{\mu}\,R_{\lambda},\,\lambda,\,\mu\in\rho\left(T\right).$
 - $(ii) \quad R_{\lambda}\left(S\right)-R_{\lambda}\left(T\right)=R_{\lambda}\left(S\right)\left(T-S\right)\,R_{\lambda}\left(T\right),\,\lambda\in\rho\left(S\right)\cap\rho\left(T\right).$
- 15. Let (T_n) be a sequence of compact linear operators from a normed space X into a Banach space Y. If (T_n) is uniformly operator convergent to T, then prove that T is compact.
- 16. Let $T: H \to H$ be a bounded self adjoint linear operator on a complex Hilbert space H. Then prove that
 - (a) all the eigenvalues of T (if they exists) are real.
 - (b) all eigenvectors corresponding to different eigenvalues of T are orthogonal.

 $(5 \times 2 = 10)$

20000140

Part C

Answer any **three** questions. Each question has weight 5.

- 17. State and prove Open Mapping theorem.
- 18. Let A be a complex Banach algebra with identity e. Then for any $x \in A$ prove that
 - (i) $\sigma(x)$ is compact.
 - (ii) $\sigma(x) \neq \emptyset$.
- 19. Let $T: X \to X$ be a compact linear operator on a normed space X. Prove that for every $\lambda \neq 0$ the range of $T_{\lambda} = T \lambda I$ is closed.
- 20. Let $S: \mathfrak{D}(S) \to H$ and $T: \mathfrak{D}(T) \to H$ be linear operators which are densely defined in a complex Hilbert space H. Then prove that
 - (i) If $S \subset T$, then $T^* \subset S^*$.
 - (ii) If $\mathfrak{D}(T^*)$ is dense in H, then $T \subset T^{**}$.
 - (iii) If T is injective and its range \Re (T) is dense in H, then T* is injective and $(T^*)^{-1} = (T^{-1})^*$.
- 21. Let $T: H \to H$ be a bounded self-adjoint linear operator on a complex Hilbert space H. Prove that a number λ belongs to the resolvent set ρ (T) of T if and only if there exists a c > 0 such that for every $x \in H$, $\|T_{\lambda}x\| \ge c \|x\|$, $(T_{\lambda} = T \lambda I)$.
- 22. Define Monotone sequence. Let (T_n) be a sequence of hounded selfadjoint linear operators on a complex Hilbert space H such that $T_1 \leq T_2 \leq \ldots \leq T_n \leq \ldots \leq K$ where K is a bounded self-adjoint linear operator on H. Suppose that any T_j commutes with K and with every T_m . Prove that (T_n) is strongly operator convergent $(T_n \, x \to T_x \text{ for all } x \in H)$ and the limit operator T is linear, bounded and self-adjoint and satisfies $T \leq K$.

 $(3 \times 5 = 15)$

