G	3	5	0	3
---	---	---	---	---

(Pages: 2)

Reg. N	0	•••••	••••••
Mama			

M.Sc. DEGREE (C.S.S.) EXAMINATION, AUGUST 2015

Second Semester

Faculty of Science

Branch I (a): Mathematics

MT 02 108—ADVANCED COMPLEX ANALYSIS

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any **five** questions. Each question has weight 1.

- 1. Define meromorphic function with an example. Explain.
- 2. If the radius of convergence of $\sum a_n z^n$ is R. Find the radii of convergence of $\sum a_n^2 z^n$ and $\sum a_n z^{2n}$.
- 3. Define: (i) entire function; and (ii) genus and order.
- 4. Extend the Riemann Zeta function to a meromorphic function in the whole plane.
- 5. Explain: (i) free boundary arc; and (ii) topological mapping.
- 6. Define: subharmonic function with example. Explain.
- 7. Define elliptic function. Prove that the sum of the residues of an elliptic function is zero.
- 8. Explain functions of finite order with illustrations.

 $(5 \times 1 = 5)$

Part B

Answer any **five** questions. Each question has weight 2.

- 9. State and prove Abel's limit theorem.
- 10. Prove that the Laurent development is unique.
- 11. Characterise a normal family using compactness.
- 12. Reproduce the proof of functional equation.
- 13. Characterise subharmonic functions using an inequality which generalizes the mean value property of harmonic functions.
- 14. Define functions with the mean value property. Show that a continuous function with mean value property is necessarily harmonic.

Turn over

- 15. Define module, period module and discrete module. Explain how to determine all discrete modules.
- 16. Derive Legendre's relation.

 $(5\times 2=10)$

Part C

Answer any **three** questions. Each question has weight 5.

- 17. (a) Derive a recurrence formula for Gamma functions.
 - (b) Find the residues of \overline{z} at the poles $z = -\infty$.
 - (c) Obtain the Legendre's duplication formula for Gamma functions.
- 18. (a) If d(a, b) is a metric function, show that $\delta(a, b) = \frac{d(a, b)}{1 + d(a, b)}$ is also a metric function.
 - (b) Show that there are infinitely many primes.
 - (c) Explain the concept of equi-continuity.
- 19. (a) Obtain Harnack's inequality.
 - (b) Derive Harnack's principle.
- 20. State and prove the Riemann mapping theorem.
- 21. State and prove the theorem on the existence of Canonical basis.

22. With usual notation prove
$$\begin{vmatrix} \mathcal{P}(z) & \mathcal{P}'(z) & 1 \\ \mathcal{P}(u) & \mathcal{P}'(u) & 1 \\ \mathcal{P}(u+z) & -\mathcal{P}'(u+z) & 1 \end{vmatrix} = 0.$$

 $(3\times 5=15)$