•

2

Reg No

Name

M Sc DEGREE (CSS) EXAMINATION, MARCH 2021

Third Semester

Faculty of Science

CORE - ME010301 - ADVANCED COMPLEX ANALYSIS

M Sc MATHEMATICS, M Sc MATHEMATICS (SF)

2019 Admission Onwards

20025F71

Time: 3 Hours

QP CODE: 21000381

Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

1. Prove that *logr* is a harmonic function.

2. Show that Poisson integral is a linear functional.

3. Find the Laurent series expansion of $f(z) = \frac{1}{z(z-1)^2}$ about the point z = 1.

- 4. Find the poles of $\frac{\pi^2}{\sin^2 \pi z}$ and the corresponding singular parts.
- 5. Prove that $\Gamma(z+1) = z\Gamma(z)$.
- 6. Prove that the zeta function can be extended to a meromorphic function in the whole plane whose only pole is a simple pole at s=1 with residue 1.
- 7. Prove that $\xi(s) = \frac{1}{2}s(1-s)\pi^{-(\frac{s}{2})}\Gamma(\frac{s}{2})\zeta(s)$ is entire.
- 8. What do you mean by the trivial zeros of the Riemann zeta function?
- 9. Define the Riemann mapping.
- 10. Define a free boundary arc. Give an example.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions. Weight **2** each.

- 11. Let Ω be a symmetric region. Prove that u(z) and $u(\bar{z})$ are simultaneously harmonic in Ω . Also prove that f(z) and $f(\bar{z})$ are simultaneously analytic in Ω .
- 12. Prove that a continuous function U(z), which satisfies the mean value property is necessarily harmonic.
- 13. Prove that the infinite product $\Pi_1^{\infty}(1+a_n)$ with $(1+a_n) \neq 0$ converges simultaneously with the series $\sum_{i=1}^{n} log(1+a_n)$ whose terms represent the values of the principal branch of the logarithm.
- 14. State and prove Poisson-Jensen's formula.
- 15. State and prove a characterisation theorem for a family \mathcal{F} of functions to be normal.
- 16. If a family \mathcal{F} of continuous functions with values in a metric space S is equicontinuous on every compact subsets of Ω and for any $z \in \Omega$, $f \in \mathcal{F}$, the values f(z) lie in a compact subset of S, then prove that \mathcal{F} is normal in Ω .
- 17. Prove that any two bases of the period module are connected by a unimodular transformation.

18. Define the
$$\zeta$$
 - function. Prove that $\zeta(z) = \frac{1}{z} + \sum_{\omega \neq 0} \left(\frac{1}{(z-\omega)} + \frac{1}{\omega} + \frac{z}{\omega^2} \right)$

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions. Weight **5** each.

- 19. Derive any four properties of subharmonic functions.
- 20. (i) Derive the Taylor series for an analytic function f(z) in a region Ω containing the point z_0 . (ii) State and prove Weirstrass's theorem for the convergence of a sequence of analytic functions. (iii) State and prove Hurwitz theorem.
- 21. (i) Prove that the Riemann Zeta function is analytic in the half plane $Re \ s > 1$.

(ii) Prove that for $\sigma > 1$, $\zeta(s) = \prod_{p_n, prime} (\frac{1}{1-p_n^s})^{-1}$. (iii) Prove that for $\sigma > 1$, $\zeta(s) = \frac{1}{\Gamma s} \int_0^\infty \frac{x^{s-1}}{e^x - 1} dx$.

22. Prove that $[\wp'(z)]^2 = 4[\wp(z)]^3 - g_2 \wp(z) - g_3$, where g_2 and g_3 are constants.

(2×5=10 weightage)