	0	4	0	0
F	0	4	9	G

(Pages: 3)

Reg.	No

Name.....

M.Sc. DEGREE (C.S.S.) EXAMINATION, JANUARY 2015

Third Semester

Faculty of Science

Branch I-(A): Mathematics

MT 03 C13—DIFFERENTIAL GEOMETRY

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions. Each question has weight 1.

- 1. Show that the graph of any function $f: \mathbb{R}^n \to \mathbb{R}$ is a level set for some function $F: \mathbb{R}^{n+1} \to \mathbb{R}$.
- 2. Show that the gradient of f at $P \in f^{-1}(c)$ is orthogonal to all vectors tangent to $f^{-1}(c)$ at P.
- 3. Define a geodesic, show that the parametrized curve $\alpha(t) = (\cos(at+b), \sin(at+b), (ct+d))$ is a geodesic in the cylinder $x_1^2 + x_2^2 = 1$ in \mathbb{R}^3 .
- 4. Define Gauss Map and Spherical image of an oriented n-surface S.
- 5. Show that $\nabla_v (X + Y) = \nabla_v X + \nabla_v Y$ for all smooth vector fields X and Y on S.
- 6. Define a global parametrization of an oriented plane curve C.
- 7. Find the normal curvature k(v) for each tangent direction v at the point $p = (1, 0, \dots, 0)$ of $x_1 + x_2 + \dots + x_{n+1} = 1$ oriented by $\nabla f / \|\nabla f\|$, where

$$f(x_1, x_2 \dots x_{n+1}) = x_1 + x_2 + \dots + x_{n+1}.$$

8. Define a parametrized n-surface in R $^{n+k}$. Give an example.

 $(5\times1=5)$

Part B

Answer any **five** questions. Each question has weight 2.

- 9. Find and sketch the gradient field of $f(x_1, x_2) = x_1 x_2^2$.
- 10. Show that the cylinder $x_1^2 + x_2^2 = 1$ can be represented as a level set of $f(x_1, x_2, x_3) = -x_1^2 x_2^2$.
- 11. Describe the spherical image when n = 1 and when n = 2 of the n surface $x_2^2 + \dots x_{n+1}^2 = 1$ oriented by $\nabla f \|\nabla f\|$ where f is the function $x_2^2 + \dots + x_{n+1}^2$.
- 12. Find the velocity, the acceleration and the speed of $\alpha(t) = (\cos t, \sin t, t)$.
- 13. Compute $\nabla_{\mathbf{v}} \mathbf{X}$ where $\mathbf{V} \in \mathbb{R}_{p}^{n+1}$, $\mathbf{X}(x_{1}, x_{2}) = (x_{1}, x_{2}, x_{1}, x_{2}, x_{2}^{2})$, $\mathbf{V} = (1, 0, 0, 1)$ and n = 1.
- 14. For each 1-form w on $U\left(U \text{ open in } \mathbb{R}^{n+1}\right)$ show that there exist unique functions $f_i: \mathbb{U} \to \mathbb{R} \left(i \in \{1, 2, \dots, n+1\}\right) \text{ such that } w = \sum_{i=1}^{n+1} f_i \ d \ x_i.$
- 15. Find the Gaussian curvature $K: S \to R$ where S is the surface given by $x_1^2 + x_2^2 x_3^2 = 0$, $x_3 > 0$.
- 16. State and prove inverse function theorem for *n*-surfaces.

 $(5 \times 2 = 10)$

Part C

Answer any three questions. Each question has weight 5.

- 17. Let U be an open set in \mathbb{R}^{n+1} and let $f: \mathbb{U} \to \mathbb{R}$ be smooth. Let $p \in \mathbb{U}$ be a regular point of f and let c = f(p). Prove that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)]^{\perp}$.
- 18. Let S be an *n*-surface in \mathbb{R}^{n+1} , let $p \in \mathbb{S}$, and let $v \in \mathbb{S}_p$ Prove that there exists an open interval I containing o and a geodesic $\alpha : I \to S$ such that (i) α (0) = p and $\dot{\alpha}$ (0) = v; (ii) If $\beta : \overline{I} \to S$ is any other geodesic in S with β (0) = p and $\dot{\beta}$ (0) = v, then $\overline{I} \subset I$ and β (t) = α (t) for all $t \in \overline{I}$.

- 19. Prove that the Weingarten map L_p is self-adjoint.
- 20. Let η be the 1-form on $\mathbb{R}^2 \{0\}$ defined by $\eta = -\frac{x^2}{x_1^2 + x_2^2} dx_1 + \frac{x_1}{x_1^2 + x_2^2} dx_2$.

Prove that for $\alpha:\{a,b\}\to\mathbb{R}^2-\{0\}$, any closed piecewise smooth parametrized curve in $\mathbb{R}^2-\{0\}$, $\int_{\alpha}\eta=2\,\pi k\ \text{ for some integer }k.$

21. Let $\phi = U \to \mathbb{R}^{n+1}$ be a parametrized *n*-surface in \mathbb{R}^{n+1} and let $p \in U$.

Prove that there exists an open set $U_1 \subset U$ about P such that $\phi(U_1)$ is an *n*-surface in \mathbb{R}^{n+1} .

22. Prove that on each compact oriented n-surface S in \mathbb{R}^{n+1} there exists a point p such that the second fundamental form at p is definite.

 $(3 \times 5 = 15)$