${f E}$	1	6	G	G
	1	u	u	u

(Pa	ges	:	3)
~~	5 00	•	•

Reg. No		
NY		
Name	***************************************	••••••

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2015

Sixth Semester

Core Course-SOLUTION CHEMISTRY-I

[Common for B.Sc. Chemistry Model – I, Model – II and B.Sc. Petrochemicals and B.Sc. Chemistry Environment and Water Management]

Time: Three Hours

Maximum Weight: 25

Section A

Answer all questions

£.		Each bunch of four questions carries a weight of 1.
I.	1	Binary mixtures of n -hexane and n -heptane obey ————————————————————————————————————
	2	According to Lewis concept an acid is a ———.
	3	Reciprocal of resistance is called ———.
	4	The relation between Electical energy and Enthalpy of cell reaction is ———.
II.	5	Combination of the two half-cells would result in a cell with the — EMF.
	6	The speed of an ion varies with the potential applied. The term used for this is
	7	The buffer index β is defined as ———.
	8	Henry's law is ———.
III.	9	Define CST.
	10	What is pH?
	11	Debye-Huckel limiting law equation is ———.
	12	— is an example for oxidation reduction indicator used in volumetric analysis.
IV.		te whether the following statements are True or False :
	13	In osmosis solvent molecules flow from high concentrated solution to less concentrated solution.
	14	An aqueous solution of FeCl ₃ is basic.
	15	Specific conductance is the product of conductance and resistance.
	16	Normal hydrogen electrode also referred to as standard electrode.
		$(4 \times 1 = 4)$

Answer any five questions. Each question carries a weight of 1.

- 17 What is meant by reverse osmosis?
- 18 Show that for an ideal solution $\Delta V_{mix} = 0$.
- 19 What is a buffer solution ? Give one example.
- 20 Give the appliation of solubility product principle.
- 21 Explain the term transport number.
- 22 How would you estimate KOH using standard oxalic acid solution conductometrically?
- 23 What is a Calomel electrode? Give the electrode reactace.
- 24 What is meant by standard electrode potential?

 $(5\times 1=5)$

Section C

Answer any four questions. Each question carries a weight of 2.

- 25 Write a note on potentiometeric titration.
- 26 Calculate the emf at 25° C. of the cell $Zn(s) |Zn^{2*}(0.1 \text{ M})| |Ag^*(0.1 \text{ M})| Ag(s)$. Given $E^*Zn^{2*}/Zn = -0.76 \text{ V}$; $E^*Ag^*/Ag = 0.80 \text{ V}$.
- 27 Describe how conductivity measurements may be used to determine the solubility of a spraingly soluble salt in water.
- 28 The molar conductances at infinite dilution for NH $_4$ Cl, NaOH and NaCl are 129.8, 217.4 and 108.9 ohm. $^{-1}$ cm. 2 eq. $^{-1}$ respectively at 29 K. The electrolytic conductivity of a 0.01 M solution of NH $_4$ OH at 291 K is 9.33 × 10 $^{-5}$ ohm. $^{-1}$ cm. $^{-1}$ Calculate the degree of dissociation of NH $_4$ OH at this dilution.
- 29 Explain Pearson's HSAB concept with suitable example.
- 30 State Raoult's law of relative lowering of vapour pressure. Show how the law can be utilized in determining the molar mass of solution.

 $(4 \times 2 = 8)$

Section D

Answer any two questions.

Each question carries a weight of 4.

31 What are ideal and non-ideal solutions? Discuss briefly the deviation of real solution from their ideal between.

- 32 What is meant by the term transport number? Explain the Hittorf's method of determining transport number.
- 33 Write note on:
 - (a) Over voltage.
 - (b) Fuel cells.

 $(2 \times 4 = 8)$