Reg No :
 Name :

M Sc DEGREE (CSS) EXAMINATION, JULY 2021

Fourth Semester

Faculty of Science

Elective - ME800402 - ALGORITHMIC GRAPH THEORY M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
 2019 Admission Onwards 0B9047E8

Time: 3 Hours
Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.
Weight 1 each.

1. Construct a graph of order 5 whose vertices have degrees $1,2,2,3,4$. What is the size of this graph?
2. Write an algorithm to determine the first word alphabetically from a list of n words, and output this word and its location in the list.
3. What is adjacency matrix of a graph? Draw the graph G be with vertex set
$V(G)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}, E(D)=\left\{v_{1} v_{2}, v_{1} v_{3}, v_{2} v_{3}, v_{3} v_{4}, v_{3} v_{5}\right\}$. Find adjacency matrix of G.
4. Define a forest. Give an example.
5. State Cayley's Tree formula.
6. Define distance function on a graph G. Show that it is a metric.
7. Define vertex connectivity of a graph. Find $\kappa\left(K_{m, n}\right)$
8. Define an edge disjoint $u-v$ path in a graph G and the term $\lambda(u, v)$, where $u, v \in V(G)$
9. Define a feasible vertex labeling of a weighted complete bipartite graph
10. Define a $\{b, v . r, k, \lambda\}$ design and state Fisher's inequality

Part B (Short Essay/Problems)

Answer any six questions.
Weight 2 each.
11. Define (a) a non-separable graph, (b) a block, (c) an end-block in a graph. Give examples for each.
12. (a) Explain indegree, outdegree and degree of a vertex in a digraph. Draw a digraph and find indegree, outdegree and degree of each vertex.
(b) State and prove The First Theorem on Digraph Theorey.
13. If T is a balanced complete binary tree of height h and order p, then prove that $h=\left\lceil\log _{2}\left(\frac{p+1}{2}\right)\right\rceil$
14. Explain BFS Algorithm
15. Define a flow in a network N . Give an example of a flow where flow along each arc is a positive integer.
16. In a network, show that the value of a maximum flow equals the capacity of a minimum cut.
17. Let G be a bipartite graph with partite sets V_{1} and V_{2}. Prove that the set V_{1} can be matched to a subset of V_{2} if and only if V_{1} is non deficient
18. Prove that every bridgeless cubic graph contains a 1-factor
$(6 \times 2=12$ weightage $)$

Part C (Essay Type Questions)
 Answer any two questions.

Weight 5 each.
19. a) An edge e of a connected graph is a bridge if and only if e does not lie on any of the cycle on G.
b) Show that every $u-v$ walk in a graph contains a $u-v$ path.
20. Write an algorithm to determine a critical path in an activity digraph D with start vertex S and terminal vertex T.
21. State and prove a necessary and sufficient condition that a flow f in a network N with underlying digraph D is a maximum flow.
22. State and prove Berge's theorem to determine the maximum matching in a graph G.

