

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2017

Sixth Semester

Core Course—COMPUTATIONAL PHYSICS

(Common for Model I B.Sc. Physics Model II B.Sc. Physics and Physics EEM)

[2013 Admission onwards]

Time: Three Hours

Maximum: 60 Marl

Part A

Answer all questions.

Each question carries 1 mark.

- 1 Explain the functions of the ALE and IO/ $\overline{\mathrm{M}}$ signals of the 8085 microprocessor.
- 2/ What is an instruction register? Why it cannot be accessed through any instruction?
- 3. If flags are individual flip-flops, can they be observed on the oscilloscope?
- 4. Distinguish between static RAM and dynamic RAM.
- 5. Name any decision making loops in C++.
- 6. Define the method of successive bisection.
- 7. What are the errors in integration formulae of Simpson's rule?
- 8. Write an algorithm for second order Newton-Raphson method.

 $(8 \times 1 = 8)$

Part B

Answer any six questions. Each question carries 2 marks.

- What are the 3 types of communication lines (buses) in 8085 bus organisation? Explain each.
- 10. Explain why a latch is used for an output port, but a tri-state buffer can be used for an input port.
- The Differentiate between assembly language and high level language.
- Discuss on different types of storage devices.
- 13. /What are objects? Describe the syntax for defining objects with examples.
- 14. What are variables? List C++ rules for variable naming.
- 15. Using Taylor series expansion obtain the Newton-Raphson formula. If a root is a repeated root then show that Newton-Raphson method converges to the root that the convergence is first order.

Turn over

- 16. Derive formula for approximating the function f(x) by fitting quadratics through sets of three points.
- 17. Solve the differential equation by using Runge-Kutta second order method:

dy/dx = 2xy

y(0) = 0.5.

Solution for $1 \ge x \ge 0$.

18. Write a note on computer-oriented numerical methods.

 $(6 \times 2 = 12)$

Part C

Answer any four questions. Each question carries 4 marks.

- 19. If the clock frequency is 5 MHz, how much time is required to execute an instruction of 18 T-states?
- 20. Write a program using the AD1 instruction to add the two hexadecimal numbers 3AH and 48H and to display the answer at an output port.
- 21. Write a C++ program to prompt the user to input 3 integer values and print these values in forward and reversed order, as shown below:

Please enter your 3 numbers: 12 45 78

Your numbers forward:

12

45

78

Your numbers reversed:

78

45

12

- 22. Write C++ program to add two integers. Make a function add() to add integers and display sum in main() function.
- 23. Use Trapezoidal rule to obtain a formula to integrate the two variable function :

$$\int_{c}^{d} \int_{a}^{b} f(x, y) dx dy.$$

24. Solve the following differential equation using Euler's method:

$$y' = x + 2y$$
$$y(0) = 0$$

numerically, finding a value for the solution at x = 1, and using steps of size h = 0.25.

 $(4 \times 4 = 16)$

Part D

Answer any **two** questions. Each question carries 12 marks.

- 25. Discuss on 8085 bus organization. Also explain address bus, data bus, control bus.
- 26. Explain the various memory storage devices in computer.
- 27. Explain any four decision making loops using with proper syntax and proper program snippets.
- 28. The distance covered by a rocket in meters from t = 8s to t = 30 s is given by:

$$x = \int_{8}^{30} \left(2000 \ln \left[\frac{140000}{140000 - 2100t} \right] - 9.8t \right) dt$$

- (a) Use Simpson's 1/3 rule to find the approximate value of x.
- (b) Find the true error, E_t .
- (c) Find the absolute relative true error, \in_t .

 $(2\times12=24)$