-	-	33.6	1000	12.00
F	W		V	U

(Pages: 2)

Reg.	No
Nam	e

M.Sc. DEGREE (C.S.S.) EXAMINATION, JANUARY 2015

Third Semester

Faculty of Science

Branch I (A)—Mathematics

MT 03 C12—FUNCTIONAL ANALYSIS

(2012 Admission Onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions. Each question has weight 1.

- 1. If a normed space X has the property that the closed unit ball is compact. Show that X is finite dimensional.
- 2. Show that if a normed space X is finite dimensional, then every linear operator on X is bounded.
- 3. Show that a finite dimensional vector space is algebraically reflexive.
- Show that in an inner product space $x \perp y$ if and only if $||x + \alpha y|| \ge ||x||$ for all scalars α .
- Let y be any closed subspace of a Hilbert space H. Show that $H = Y \oplus Y^{\perp}$.
- 6. Let A and B⊃A be non-empty subsets of an inner product space X.

Show that : (a) $A \subset A^{\perp \perp}$. (b) $B^{\perp} \subset A^{\perp}$.

- 7. Pove that for every x in a normed space X, $||x|| = \sup_{f \in X^1} \frac{|f(x)|}{||f||}$.
- 8. Show that the canonical mapping C defined by $C(x) = g_x$, where $x \in X$ and $gx \in X''$ is an isomorphism of the normed space X onto the normed space R (C), the range of C.

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question has weight 2.

- Show that every finite dimensional subspace Y of a normed space X is complete.
- 10. State and prove Riesz's lemma.

- 11. Let $T: \mathcal{D}(T) \to Y$ be a linear operator, where $\mathcal{D}(T) \subset X$ and X and Y are normed spaces. Prove that
 - (a) T is continuous if and only if T is bounded.
 - (b) If T is continuous at a single point, it is continuous.
- 12. If Y is Banach space, show that B(X, Y) is a Banach space.
- 13. Let X be an inner product space and $M \neq \emptyset$ a convex subset which is complete. Prove that for every $x \in X$ there exists a unique $y \in M$ such that $\delta = \inf_{\overline{y} \in M} \|\overline{y} x\| = \|y x\|$.
- 14. Prove that every Hilbert space H is reflexive.
- 15. Show that in every Hilbert space $H \neq [0]$ there exists a total orthonormal set.
- 16. Let X be a normed space and $x_0 \neq 0$ be any element of X. prove that there exists a bounded linear functional \tilde{f} on X such that $\|\tilde{f}\| = 1$, $\tilde{f}(x_0) = \|x_0\|$.

 $(5 \times 2 = 10)$

Part C

Answer any three questions. Each question has weight 5.

- 17. Let X be a normed space, show that there is a Banach space \tilde{X} and an isometry A from X onto a subspace W of \tilde{X} which is dense in \tilde{X} . Also show that \tilde{X} is unique, except for isometries.
- 18. Show that the dual of l^p is l^q for $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$.
- 19. (a) Let X be an n-dimensional vector space and $E = \{e_1, e_2, ... e_n\}$ a basis for X. Show that $F = \{f_1, f_2, ... f_n\}$ given by $f_k(c_j) = \delta_{jk} = \begin{cases} 0 & \text{if } j \neq k \\ 1 & \text{if } j = k \end{cases}$ is a basis for the algebraic dual of X.
 - (b) Show that the dual of l^1 is l^{∞} .
- 20. State and prove Bessel inequality.
- 21. Prove that two Hilbert spaces H and \tilde{H} , both real or both complex, are isomorphic if and only if they have the same Hilbert dimension.
- 22. State and prove Generalized Hahn-Banach theorem.

 $(3\times 5=15)$