\sim	~-	~ -
+	35	\mathbf{O}
\sim	\mathbf{o}	\mathbf{v}

(Pages: 2)

Reg. No	
Monage	

M.Sc. DEGREE (C.S.S.) EXAMINATION, AUGUST 2015

Second Semester

Faculty of Science

Branch I (A)—Mathematics

MT 02 C06—ABSTRACT ALGEBRA

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions. Each question carries weight 1.

- 1. State the fundamental theorem of finitely generated Abelian groups.
- 2. Define zero of $f(x) \in F[x]$ with an example.
- 3. Define the two categories of the elements of an extension field with examples.
- 4. Define finite field with two examples.
- 5. Explain p-group and p-subgroup with examples.
- 6. Show that every group of prime-power order is solvable.
- 7. Define splitting field with two examples.
- 8. Explain: Galois theory gives a beautiful interplay of group and field theory.

 $(5 \times 1 = 5)$

Part B

Answer any **five** questions. Each question carries weight 2.

- 9. Establish the existence of direct product of a finite number of groups.
- 10. Show-that the multiplicative group of all non-zero elements of a finite field is cyclic.
- 11. Show that the concept of a field being algebraically closed can be defined in terms of factorization of polynomials over field.
- 12. Define algebraic extension and finite extension. Show that a finite extension field E of a field F is an algebraic extension of F.
- 13. Show that there are no simple groups of order $p^r m$ where p is a prime number, r is a positive integer and m < p.

Turn over

- 14. Explain: (i) Burnside's formula; (ii) Normalizer; (iii) Sylow p-subgroup; and (iv) Normal subgroup.
- 15. Give an example to show that a zero of multiplicity greater than 1 of an irreducible polynomial can occur.
- 16. Every field of characteristic zero:
 - (a) Is perfect—Prove.
 - (b) Show that $Q(\sqrt[3]{2})$ has only the identity automorphism.

 $(5 \times 2 = 10)$

Part C

Answer any three questions. Each question carries weight 5.

- 17. Show that the group $z_m \times z_n$ is cyclic and is:
 - (a) Isomorphic to z_{mn} iff gcd of m and n is 1. Extend this to a product of more than 2 factors.
 - (b) State and prove division algorithm for F(x).
- 18. (a) Find all prime numbers p such that x+2 is a factor of $x^4+x^3+x^2-x+1$ in $z_p[x]$.
 - (b) Characterise a group G to be the interval direct product of subgroups H and K.
- 19. State and prove the theorem which give us the nature of the field $F(\alpha)$ in case where α is algebraic over F. Give an example illustrating this theorem.
- 20. (a) Characterise extensions of F of the form $F(\alpha_1, \alpha_2, \alpha_n)$ in the case that all the α_i are algebraic over .
 - (b) With usual notations prove

$$[K:F] = [K:E][E:F].$$

- 21. (a) State and prove Cauchy's theorem on the order a subgroup.
 - (b) State the Sylow theorems. Use them to show that no group of order 15 is simple.
- 22. (a) State and prove the Primitive Element Theorem.
 - (b) If E is a finite extension of F prove {E:F} divides [E:F].

 $(3\times 5=15)$