

	QP CODE: 22000599			Reg No			
		22000599		Name			
MSc DEGREE (CSS) EXAMINATION , JANUARY 2022							
Second Semester							
	M.Sc.COMPUTER SCIENCE (DATA ANALYTICS)						
	CORE - CA030201 - MATHEMATICS FOR DATA ANALYTICS						
	20	19 Admission Onw	ards				
		A9664BFF					
	Time: 3 Hours				W	/eightage: 30	
	Part A	A (Short Answer Que	estions)				
	An	swer any eight quest	ions.				
		Weight 1 each.					
	 Let p and q be the propositions " Swimming at the New Jersy shore is allowed" and " Sharks have been spotted near the shore" respectively . Express each of these compound proposition as an English sentence. a) ¬q b) p ∧ q c) ¬p ∨ q d) ¬p ∧ (p ∨ ¬q) 						
2.	 2. Draw the truth table for the biconditional statement p ↔ q and determine wether the following biconditionals are true or false. a) 2+2=4 if and only if 1+1=2 b) 1+1=2 if and only if 2+3=4 c) 1+1=3 if and only if monkey can fly d) 0>1 if and only if 2>1. 						
 a) Define predicate and give example. b) Let A(c,n) denote the statement " Computer c is connected to network n.", where c is a variable representing a computer and n is a variable representing a network. Suppose that the computer MATH1 is connected to network CAMPUS2, but no to network CAMPUS1. What are the values of A(MATH1,CAMPUS1) and A(MATH1,CAMPUS2). 							
4.	For every set S, prove that (i) $\emptyset \subseteq S$	(ii)S⊆ S.					
5.	Define difference and find A-B , B-A , A- (A \cap B) Where $A = \{0,2,4,6,8,10\}$ and $B = \{0,1,2,3,4,5,6\}.$						

6.	Define vector space and give example.				
7.	Define hyperplane. Describe special types of hyperplanes.				
8.	Define Frechet Derivatives and give example.				
9.	Give the general idea of a membership value of a fuzzy set with suitable examples.				
10.	Define the standard operations on fuzzy sets.				
	(8×1=8 weightage				
	Part B (Short Essay/Problems)				
	Answer any six questions.				
	Weight 2 each.				
11.	Which of the following sentences are propositions justify your answer. a)Donot Pass go. b)4+x=5 c)x+2=11 d) Answer thie question. e)2^n≥100				
12.	 What is the negation of each of these propositions a) Today is thursday. b) There is no polution in Ernakulam c)2+1=3 d)The summer in Palakkad is hot and sunny. e) At least 10 inches of rain fell today in Chirapunchi. 				
13.	Prove that $\lfloor -x floor = -\lceil x ceil$ and $\lfloor x+n floor = \lfloor x floor + n$				
14.					
15.	Find the rank of $A = egin{bmatrix} 1 & 3 & -2 & 5 & 4 \ 1 & 4 & 1 & 3 & 5 \ 1 & 4 & 2 & 4 & 3 \ 2 & 7 & -3 & 6 & 13 \end{bmatrix}$.				
16.	Define inner product. Let $\alpha = (x_1, x_2, \dots x_n)$ and $\beta = (y_1, y_2, \dots y_n)$, prove that $x_1 \overline{y}_1 + x_2 \overline{y}_2 + \dots + x_n \overline{y}_n$ is an inner product on C^n .				
17.	Write a short note on Steepest Descent method.				
18.	Write a short note on type 2 fuzzy set, type 3 fuzzy set and type n fuzzy set.				

	(6×2=12 weightage)		
	Part C (Essay Type Questions)		
	Answer any two questions.		
	Weight 5 each.		
19.	a) What are the negations of the statements $\forall x(x^2 > x) \text{ and } \exists x(x^2 = 2)$. b) Show that $\neg \forall x(P(x) \rightarrow Q(x)) \text{ and } \exists x(P(x) \land \neg Q(x))$ are logically equivalent. c) Exprese the statements "Some student in this class has visited Mexico" and " Every student in this class has visited either Canada or Mexico." using predicates and quantifiers.		
20.	 (a) State and prove distributive laws for sets. (b) For any three sets A,B and C, prove that (A-B)-C=(A-C)-(B-C) 		
21.	Find the rank and eigen values of the matrix $A = egin{bmatrix} 1 & -1 & 0 \ 2 & 3 & 2 \ 1 & 1 & 2 \end{bmatrix}$.		
22.	Let $A(x) = \begin{cases} 0 & \text{when } x \le 20 \text{ or } \ge 60 \\ \frac{(x-20)}{15} & \text{when } 20 < x < 35 \\ \frac{(60-x)}{15} & \text{When } 45 < x < 60 \\ \frac{15}{1} & \text{when } 35 \le x \le 45 \end{cases}$ $B(x) = \begin{cases} 0 & \text{when } x \le 45 \\ \frac{(x-45)}{15} & \text{when } 45 < x < 60 \\ 1 & \text{when } x \ge 60 \end{cases}$		
	Find ${}^{\alpha}A$, ${}^{\alpha}B$, ${}^{\alpha+}A$ ${}^{\alpha+}B$ for any $\alpha \in (0,1]$		
	(2×5=10 weightage)		