

QP CODE: 19002355

Reg No :

M.Sc. DEGREE (C.S.S.) EXAMINATION, NOVEMBER 2019

First Semester

Faculty of Science

MATHEMATICS

Core - ME010104 - REAL ANALYSIS

2019 Admission Onwards 6A0EF4BF

Time: 3 Hours

Maximum Weight:30

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1. Prove that if f is monotonic on [a,b] then f is of bounded variation on [a,b].
- 2. Prove the additive property of arc lengths.
- 3. Let $f(x) = \begin{cases} 0 & \text{if } x \text{ is irrational} \\ 1 & \text{if } x \text{ is rational} \end{cases}$. Is f Riemann integrable on [0, 1]?.
- 4. If $f \in \mathcal{R}(\alpha)$ and $g \in \mathcal{R}(\alpha)$ then show that $fg \in \mathcal{R}(\alpha)$.
- 5. Define the unit step function I. Is it continuous?.
- 6. If $\{f_n\}$ and $\{g_n\}$ are sequences of bounded functions which converge uniformly on a set E, then prove that $\{f_ng_n\}$ converges uniformly on E.
- 7. State Weierstrass uniform convergence test for series of functions.
- 8. Under what conditions, a sequence $\{f_n\}$ of continuous functions defined on a compact set K, is convergent uniformly to a continuous function f?
- 9. Define piontwise boundedness and uniform boundedness of a sequence of functions.
- 10. For $n=0,1,2,\ldots$, and x real, prove that $|\sin nx| \leq n |\sin x|$

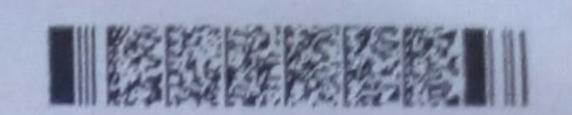
(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

11. Let f be defined on [a,b]. Then show that f is of bounded variation on [a,b] if, and only if, f can be



expressed as the difference of two strictly increasing functions.

- 12. Prove that a vector valued function **f** is rectifiable if and only if each of its components is of bounded variation.
- 13. If P^* is a refinement of P then prove that $U(P^*, f, \alpha) \leq U(P, f, \alpha)$.
- 14. If f is monotonic on [a, b] and if α is continuous on [a, b] then prove that $f \in \mathcal{R}(\alpha)$.
- 15. Prove that $\sum_{n=0}^\infty f_n(x)$ is a convergent series having a discontinuous sum, where $f_n(x)=rac{x^2}{(1+x^2)^n}\ (x\in\mathbb{R}, n=0,1,2,\dots)$.
- 16. Let α be monotonically increasing on [a,b]. Suppose $f_n \in \mathcal{R}(\alpha)$ on [a,b], for $n=1,2,3,\ldots$ and suppose $f_n \to f$ uniformly on [a,b]. Then prove that $f \in \mathcal{R}(\alpha)$ on [a,b].
- 17. Let K be a compact metric space and let S be a subset of $\mathscr{C}(K)$. Prove that S is compact if and only if S is uniformly closed, pointwise bounded and equicontinuous.
- 18. If $\sum a_n, \sum b_n, \sum c_n$, converge to A,B,C, and if $c_n=a_0b_n+\ldots+a_nb_0$, prove that C=AB. (6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. (i) State and prove additive property of total variation. (ii) Let f be of bounded variation on [a,b]. Let V be defined on [a,b] as $V(x)=V_f(a,x)$, if $a < x \le b$ and V(0)=0. Then prove that V and V-f are increasing functions on [a,b].
- 20. Suppose a increases monotonically on [a,b], g is continuous and g(x) = G'(x) for $a \le x \le b$. Prove that $\int_a^b \alpha(x)g(x)dx = G(b)\alpha(b) G(a)\alpha(a) \int_a^b Gd\alpha.$
- 21. Establish the existence of a real valued continuous function which is nowhere differentiable.
- 22. Prove that, for every interval [-a,a] there exits a sequence of real polynomials P_n such that $P_n(0)=0$ and such that $\lim_{n\to\infty}P_n(x)=|x|$ uniformly on [-a,a].

(2×5=10 weightage)

