B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2017

Third Semester

Complementary Course-Mathematics

VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND ANALYTIC GEOMETRY

(Common for B.Sc. Physics, Chemistry, Petrochemicals Geology, Computer Maintenance and Electronics and Food Science and Quality Control)

[2013 Admission onwards]

Time: Three Hours

Maximum Marks: 80

Part A

Answer all questions.

Each question carries 1 mark.

- 1. Define continuity of a vector function r(t).
- 2. Find the length of one turn of the helix $r(t) = \cos t i + \sin t j + tk$.
- 3. Define curvature of a curve.
- 4. Find the gradient field of f(x, y, z) = xyz.
- 5. Define an exact differential form.
- 6. Define tangential form of Green's theorem.
- 7. Find an integrating factor of $(x^2 2x + 2y^2)dx + 2xydy = 0$.
- 8. Write the general form of Clairant's equation.
- 9. Write the equation of the ellipse where foci : $(0, \pm 3)$, eccentricity : 0.5.
- 10. Replace the polar equation by equivalent Cartesian equation $r \cos \theta = -4$.

 $(10 \times 1 = 10)$

Part B

Answer any eight questions. Each question carries 2 marks.

- 11. Show that the curvature of a circle of radius a is 1/a.
- 12. Find N for the helix $r(t) = a \cos t i + a \sin t j + bt k$, $a, b \ge 0$, $a^2 + b^2 \ne 0$, where N is the principal unit normal.
- 13. Find the derivative of $f(x, y) = 2xy 3y^2$ at (5, 5) in the direction of A = 4i + 3j.

- 14. Evaluate $\int (xy+y+z) ds$ along the curve r(t) = 2ti+tj+(2-2t)k, $0 \le t \le 1$.
- 15 Find the work done by force $F = \sqrt{z}i - 2xj + \sqrt{y}k$ along the straight line path $r(t) = ti + tj + tk, 0 \le t \le 1$ from (0, 0, 0) to (1, 1, 1).
- 16. State Stoke's theorem.
- 17. Solve $p^3 - 4xyp + 8y^2 = 0$, where $p = \frac{dy}{dx}$
- 18. Solve $(2x + e^y)dx + xe^y dy = 0$
- 19 Solve $\frac{dy}{dx} + y \tan x = \cos x$.
- Sketch the parabola $x = 2y^2$
- 21. Find the polar equation for the circle $x^2 + (y - 3)^2 = 9$.
- Find the directrix of the parabola $r = \frac{10 + 10\cos\theta}{10 + 10\cos\theta}$

 $(8 \times 2 = 16)$

(b) Sketch the conic $r = \frac{10 - 5\cos\theta}{1}$

Each question carries 4 marks. Answer any six questions.

23 Without finding T and N, write the accelaration of the motion:

 $r(t) = (\cos t + t \sin t)i + (\sin t - t \cos t)j, t > 0$

in the form $a = a_T T + a_N N$.

- 24. Find the directions in which $f(x, y) = x^2/2 + y^2/2$ increases most rapidly and decreases most rapidly
- 25 Find the circulation and flux of F = xi + yj around and across the circle $r(t) = \cos t i + \sin t j$, $0 \le t \le 2\pi$.
- 26. Integrate g(x, y, z) = y + z over the surface of the wedge in the first octant bounded by the co-ordinate planes and the planes x = 2 and y + z = 1.
- 27. Verify divergence theorem for the field F = xi + yj + zk over the sphere $x^2 + y^2 + z^2 = a^2$
- Solve the equation $y = 2px + y^2 p^3$.
- 29. Solve $(x^2-3xy+2y^2)dx + x(3x-2y)dy = 0$.
- Derive the standard equation of the ellipse.
- Sketch the hyperbola $8x^2 2y^2 = 16$ include asymptotes and foci.

E 7641

Part D

Each question carries 15 marks Answer any two questions.

- 32. (a) Find K and T for the helix $r(t) = a \cos t i + a \sin t j + b t k$, $a, b \ge 0, a^2 + b^2 \ne 0$
- Find the tangent plane and normal line of the surface $f(x, y, z) = x^2 + y^2 + z 9 = 0$
- Use surface integral in Stoke's theorem to calculate the circulation of the field $F = x^2i + 2x$ around the ellipse $4x^2 + y^2 = 4$ in the xy plane counter clockwise.
- region D; $0 < a^2 \le x^2 + y^2 + z^2 \le b^2$. Find the net outword flux of the field $F = \frac{xi + yj + 2k}{\rho^3}$, $\rho = \sqrt{x^2 + y^2 + z^2}$ across the boundary
- (a) A wheel of raidus a rolls along a horizontal straight line. Find the parametric equation the path traced by a point p on the wheel's circumference.

(2 × 15