F	6527
Ľ	UUL

(Pages: 2)

Reg. No	••••••
NT.	

M.Sc. DEGREE (CSS) EXAMINATION, JANUARY 2015

Third Semester

Faculty of Science

Branch: II—Physics-A-Pure Physics

Elective Bunch A-Electronics

PH3EA2—MICROELECTRONICS AND SEMICONDUCTOR DEVICES

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any six questions. Weight 1 each.

- 1. List the 16-bit register that are used for register addressing.
- 2. What is a label?
- 3. What are the instructions available in 8086 to manipulate on stack and stack pointer?
- 4. Shortly explain DMA.
- 5. What is meant by address space partitioning?
- 6. List the special function registers of 8051.
- 7. Write the opcode that move the data between the locations within the 8051.
- 8. What is the function of a co-processor?
- 9. Describe the charge flow in forward-biased Schottkey Barrier Diode.
- 10. Write a program to subtract the content of memory location 2101H from the content of memory location 2100H and place the result in 2102H location with minimum number of instructions.

 $(6 \times 1 = 6)$

Part B

Answer any **four** questions. Weight 2 each.

- 11. Explain flag registers of 8086 with block diagram.
- 12. Explain the operational difference between PUSH and POP instruction.
- 13. Write a note on virtual memory and cache memory.
- 14. Compare microprocessor and microcontroller. Write the applications of microcontroller.

Turn over

- 15. Write a note on 8051 Microcontroller Interrupts.
- 16. Consider a contact between tungsten and n type silicon doped to $N_d = 10^6$ cm⁻³ at 300 K. Calculate the theoretical barrier height, built in potential barrier and maximum electric field in a metal semi conductor diode for zero applied bias. Given work function of tungsten = 4.55 V and electron affinity for silicon is 4.01V.

 $(4 \times 2 = 8)$

Part C

Answer all questions. Weight 4 each.

17. (a) Briefly explain the programming model of Intel 8086. with a neat block dragram.

Or

- (b) Explain the possible variations of data addressing modes using MOV instruction.
- 18. (a) Explain pin out description of 8051.

Or

- (b) Explain the basic ideas of embedded system.
- 19. (a) Explain the process of interfacing memory and I/O devices to microprocessor.

Oı

- (b) Explain the important 8086 Pin diagram and describe each.
- 20. (a) (i) · Compare Schottkey Barrier diode and p-n Junction diode.
 - (ii) Describe the energy band diagram of hetero junction materials.

Or

(b) Explain ideal non-rectifying barriers and tunneling barriers.

 $(4\times 4=16)$