B.C.A. DEGREE (C.B.C.S.S.) EXAMINATION, NOVEMBER 2017

First Semester

MATRICES, CALCULUS AND LAPLACE TRANSFORMS

(Complementary Mathematics for B.C.A.)

[2013-2016 Admissions]

Time: Three Hours

Maximum Marks: 80

Part A (Short Answer Questions)

Answer all questions.

Each question carries 1 mark

1. Define a Hermitian matrix.

2. What do you mean by an inconsistent system of equations?

3. Define a principal minor of a matrix.

A. Give the formal definition of limit of a function.

6. Find
$$\lim_{x \to 2} \frac{(x-2)^2}{x^2-4}$$
.

6. Derive a partial differential equation by eliminating the constants from the equation :

$$a(x+y)+6(x-y)+c=z.$$

7. Define complete and particular integrals of a partial differential equation.

8. Find the partial differential equation by eliminating the arbitrary function from $z = g(x + y^2)$.

6. Using the definition of Laplace transform find L (sin at).

10. Find the Laplace inverse of $\frac{1}{s(s^2+a^2)}$.

 $(10 \times 1 = 10)$

Turn over

Part B (Brief Answer Questions)

Answer any eight questions. Each question carries 2 marks.

11. Find the rank of
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{bmatrix}$$
.

If $A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, $B = \begin{bmatrix} x & y \\ -y & x \end{bmatrix}$ if a, b, x, y are all different from zero find the inverse of A, B and verify that $(A B)^{-1} = B^{-1}A^{-1}$.

13. Find the eigen values and corresponding eigen vectors of the matrix $A = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$.

14. Find the tangent line to the curve
$$f(x) = x + \frac{9}{x}$$
, at $x = -3$.

Ab. The curve $y = ax^2 + bx + c$ passes through the point (1, 2) and is tangent to the line y = x at the origin, find a, b and c.

16. Find the absolute maximum and minimum value of the function $f(x) = \sqrt[3]{x}$ where $-1 \le x \le 8$.

17. Form the partial differential equation by eliminating the functions from $z = f(x) + e^{y}g(x)$.

18. Solve
$$\frac{\partial^2 z}{\partial x \partial y} = \frac{x}{y} + a$$
.

19. Find the Laplace transform of cos 2t cos 3t.

20. Apply the convolution theorem to evaluate $L^{-1}\left(\frac{s}{s^2+a^2}\right)$

Find the inverse Laplace transform of $\frac{s+3}{s^2-4s+13}$.

If $L\{F(t)\}=f(s)$ and $G(t)=\begin{cases} F(t-a) & t>a\\ 0 & t<a \end{cases}$ then prove that $L\{G(t)\}=e^{-as}f(s)$.

Part C (Short Essay Questions)

Each question carries 4 marks Answer any six questions.

23. Obtain the row equivalent Canonical matrix C of the matrix A and hence find its rank,

here
$$A = \begin{cases} 1 & 2 & -1 & 4 \\ 2 & 4 & 3 & 4 \\ -1 & -2 & 6 & -7 \end{cases}$$

24. Find the adjoint matrix of the matrix $D = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$

State the mean value theorem and interpret it geometrically

26. Let f be differentiable at every value of x and suppose that f(1) = 1, f' < 0 on $(-\infty, 1)$, and f > 0 on $(1,\infty)$. Show that $f(x) \ge 1$ for all x.

27. Solve $\frac{\partial^2 z}{\partial x^2} + z = 0$ given that when x = 0, $z = e^y$ and $\frac{\partial z}{\partial x} = 1$.

Solve $(x^2 - y^2 - z^2) p + 2xy q = 2x z$.

Find the differential equation of all planes which are at a constant distance 'a' from the origin.

30. Find the Laplace transform of:

$$\left(\sqrt{t}-\frac{1}{\sqrt{t}}\right)^{\circ}$$

31. Apply convolution theorem to evaluate the inverse Laplace transform of (s2+a2)2

Part D (Long Essay Type Questions)

Each question carries 15 marks.

Consider the system of equations:

$$x+2y+z=2, 3x+y-2z=1$$

 $4x-3y-z=3, 2x+4y+2z=4.$

(a) Check whether the given system is consistent or not.

(b) Solve the system of equations by using matrix method.

E 7825

(c) Given
$$A = \begin{bmatrix} 2 & 3 & 6 \\ 3 & -6 & 2 \\ -6 & -2 & 3 \end{bmatrix}$$
. Find A^{-1} and $A^{T}A$, what type of a matrix is A ?

- 33. A dynamite blast blows a heavy rock straight up with a velocity of 160 ft/sec. It reaches a height of $s = 160 t 16 t^2$ ft, after t sec, then :
 - (a) How high does the rock go?
 - (b) What is the velocity and speed of the rock when it is 256 ft above the ground on the way up? on the way down?
 - (c) What is the acceleration of the rock at any time 't' during its flight (after the blast)? and when does the rock hit the ground again.
 - 34. (a) Solve $\frac{\partial^2 z}{\partial x^2} = a^2 z$ given that when x = 0 $\frac{\partial z}{\partial x} = a \sin y$ and $\frac{\partial z}{\partial y} = 0$.
 - (b) Solve $(x^2 yz)p + (y^2 zx)q = z^2 xy$.
 - (c) Find the differential equation of all spheres of fixed radius having their centres lie or the z-axis.
- 35. (a) If $L[f(t)] = \overline{f}(s)$ show that:

$$L[(\sinh at)f(t)] = \frac{1}{2}[\overline{f}(s-a) - \overline{f}(s+a)] \text{ and } L[(\cosh at)f(t)] = \frac{1}{2}[\overline{f}(s-a) + \overline{f}(s+a)].$$

- (b) Find the inverse Laplace transform of $\frac{s}{s^4 + 4a^4}$.
- (c) Apply the convolution theorem to evaluate:

(i)
$$L^{-1}\left(\frac{s}{\left(s^2+a^2\right)^2}\right)$$
.

(ii)
$$L^{-1} \left(\frac{s^2}{\left(s^2 + a^2\right)\left(s^2 + b^2\right)} \right)$$
.

 $(2 \times 15 = 30)$