F	5	0	6	G
100	Bassel	~	C.	W

(Pages: 3)

Reg.	N	o	••••	••••	••••	•••••	
Name							

M.Sc. DEGREE (C.S.S.) EXAMINATION, JANUARY 2016

Third Semester

Faculty of Science

Branch I (A)—Mathematics

MT 03 C13—DIFFERENTIAL GEOMETRY

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions. Each question has weight 1.

- 1. Find the gradient field of $X(x_1, x_2) = (x_2, x_1)$.
- 2. Define (i) Regular point of a smooth function; (ii) Tangent space.
- 3. Define a geodesic. Show that geodesics have constant speed.
- 4. Prove that if X and Y are two parallel vector fields along α, X · Y is constant along α.
- 5. Compute $\nabla_v f$ where $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x_1, x_2) = 2x_1^2 + 3x_2^2$, where v = (1, 0, 2, 1).
- 6. Define a differential 1-form. How will you define the sum of two1-forms.
- 7. Define a parametrized n-surface. Write the map which represent the parametrized torus in R4.
- 8. State inverse function theorem.

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question has weight 2.

- 9. Sketch the level curves and graph of $f(x_1, x_2) = x_1^2 x_2^2$.
- 10. Let $S \subset \mathbb{R}^{n+1}$ be a connected *n*-surface in \mathbb{R}^{n+1} . Prove that there exist on S exactly two smooth unit normal vector fields N_1 and N_2 and $N_2(p) = -N_1(p)$ for all $p \in S$.

- 11. Describe the spherical image when n = 1 and n = 2 of the surface $-x_1^2 + x_2^2 + \dots + x_{n+1}^2 = 0$, $x_1 > 0$, oriented by $\nabla f / \|\nabla f\|$.
- 12. Let S be an *n*-surface in \mathbb{R}^{n+1} , let $\alpha: I \to S$ be a parametrized curve and let X and Y be vector fields tangent to S along α . Show that (i) (X + Y)' = X' + Y'; (ii) (f X)' = f' X + f X' for all smooth functions f along α .
- 13. Find the global parametrization of the plane curve oriented by $\nabla f / \|\nabla f\|$ where f is the function defined by $ax_1 + bx_2 = c$, $(a, b) \neq (0, 0)$.
- 14. Let V be a finite dimensional vector space with dof product and let $L: V \to V$ be a self-adjoint linear transformation on V. Show that there exists an orthonormal basis for V consisting of eigen vectors of L.
- 15. Find the Gaussian curvature of the parametrized 2-surface.

$$\phi(t,\theta) = (\cos\theta, \sin\theta, t).$$

16. Let C be a connected oriented plane curve and let $\beta: I \to C$ be a unit speed global parametrization of C.

Prove that β is either one-one or periodic. Also show that β is periodic if and only C is compact.

 $(5\times2=10)$

Part C

Answer any three questions. Each question has weight 5.

- 17. Let U be an open set in \mathbb{R}^{n+1} and let $f: \mathbb{U} \to \mathbb{R}$ be smooth. Let $p \in \mathbb{U}$ be a regular point of f and let f(p) = c. Prove that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)]^{\perp}$.
- 18. Let S be a compact connected oriented *n*-surface in \mathbb{R}^{n+1} exhibited as a level set $f^{-1}(c)$ of a smooth function $f: \mathbb{R}^{n+1} \to \mathbb{R}$ with $\nabla f(p) \neq 0$ for all $p \in S$. Prove that the Gauss map maps S onto the unit sphere S^n .
- 19. Let C be an oriented plane curve. Prove that there exists a global parametrization of C if and only if C is connected.

- 20. (a) Prove that the Weingarten map \boldsymbol{L}_{p} is self adjoint.
 - (b) Prove that $\nabla_v (f X) = (\nabla_v f) \times (p) + P(p) (\nabla_v X)$.
- 21. (a) Prove that on each compact oriented n-surface S in \mathbb{R}^{n+1} , there exists a point P such that the second fundamental form of P is definite.
 - (b) Find the Gauss-Kronecker and mean curvatures of $f(x_1, x_2...x_{n+1}) = c$ oriented by $\nabla f/\|\nabla f\|$, where $x_1 + x_2 + ... + x_{n+1} = 1$, p = (1, 0...0).
- 22. Let S be an *n*-surface in \mathbb{R}^{n+1} and let $f: \mathbb{S} \to \mathbb{R}^k$. Prove that f is smooth if and only if $f \circ \phi: \mathbb{U} \to \mathbb{R}^k$ is smooth for each local parametrization $\phi: \mathbb{U} \to \mathbb{S}$.

 $(3 \times 5 = 15)$